判断客户价值,用好这3个数据分析模型就足够了!

判断客户价值,用好这3个数据分析模型就足够了!

细边框标题

工作中,很多时候都是要在资源有限的情况下,去最大化的撬动效益。挖掘创造最大价值的用户,给用户分类针对性营销等,就是一种典型的应用。

本文将来谈谈常用的几个衡量客户价值的数据分析模型,以及它们的应用场景。这在用户运营、市场营销、客户管理等领域常常会用到。

01

使用帕累托模型判断重要客户

帕累托原则,又称二八原则,是关于效率与分配的判断方法。帕累托法则是指在任何大系统中,约80%的结果是由该系统中约20%的变量产生的。应用在企业中,就是80%的利润来自于20%的项目或重要客户。

模型的解释:

当一个企业80%利润来自于20%的客户总数时,这个企业客户群体是健康且趋于稳固的。

当一个企业80%利润来自大于20%的客户总数时,企业需要增加大客户的数量。当一个企业80%利润来自小于20%的客户群时,企业的基础客户群需要拓展与增加。模型的实际使用:

如下图某商场品牌商的销售额。一共10家客户,5家客户(50%)提供了80%的销售额,这就说明需要增加大品牌客户数量。

(这个例子客户数量较少,不是非常恰当,大家理解意思即可)

带来大量销售额的客户必须认真对待和维护,如果客户数量大,尤其需要列出重点客户重点跟进,把有限的精力放在创造利润大的客户上。

02

使用四象限法判断最大客户

四象限最初是一个时间管理模型,按照紧急、不紧急、重要、不重要排列组合分成四个象限,以此便于对时间进行有效的管理。

模型解释:运用在客户分析中,也就是利用销售额和利润这两个重要指标分为四个象限,对我们的客户进行分组。

具体措施如下:

销售额高和利润都高的客户:重点对待销售额高但是利润少的客户:一般保持销售额低但是利润高的客户:重点发展

销售额和利润双低的客户:需要查明原因模型的实际使用:

如图所示,每个销售大区与每个销售年份下的客户分布。

通过筛选数据,我们得到我们想要的客户信息。

03

使用RFM模型判断客户价值

RFM分析是客户关系分析中一种简单实用客户分析方法,他将最近一次消费、消费频率、消费金额这三个要素构成了数据分析最好的指标,衡量客户价值和客户创利能力。RFM分析也就是通过这个三个指标对客户进行观察和分类,针对不同的特征的客户进行相应的营销策略。

R——最后交易距离当前天数(Recency)F——累计交易次数(Frequency)M——累计交易金额(Monetary)在这三个制约条件下,我们把M值大,也就是贡献金额最大的客户作为“重要客户”,其余则为“一般客户"和”流失客户“。基于此,我们产生了8种不同的客户类型。

模型的解释:

模型的实际使用:

RFM模型主要按照特定的要求将客户筛选出来。

以下是我建立的一个客户筛选可视化模板,可以整体看看客户的情况。

最后,以上模型也可应用在别的业务场景下。比如帕累托模型衍生出的ABC分类法,可用于产品分析。比如将70%,20%,10%的销售额比重把产品分为ABC三类,然后把重点的管理资源放在A,把较少的资源分配给C或者砍掉部分C商品,以达到资源管理的最优状态。

所以,模型的学习关键在于理解原理,以后各项分析都融汇贯通。

相关文章

麻辣小龙虾🦞(家庭版)
365提供参考号BAVF

麻辣小龙虾🦞(家庭版)

⌛ 06-29 👁️‍🗨️ 387
【新能源车型库】2025新能源车报价及图片
365bet365.com

【新能源车型库】2025新能源车报价及图片

⌛ 06-29 👁️‍🗨️ 2470
国际足联推改革:成员国公开投票决定2026年世界杯举办地
跳蚤在人身上怎么消灭
365提供参考号BAVF

跳蚤在人身上怎么消灭

⌛ 10-31 👁️‍🗨️ 4867
时空猎人3用什么账号登录
365bet365.com

时空猎人3用什么账号登录

⌛ 07-22 👁️‍🗨️ 3716
优选财富
365提供参考号BAVF

优选财富

⌛ 09-13 👁️‍🗨️ 9312